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The loss of detection sensitivity incurred by any stage of image processing may nor-
mally be characterized by the frequency dependence cf the detective quantum efficiency (DQE)
of that stage of processing, provided the image i3 represented in continuous coordinates.
However, llmitaticns tc the DQE concept arise when discretely sampled projection data are
used to obtain discrertely sampled computed tomographic (CT) reconstructions. The source of
these limitations 1s che al_asling produced by the discrete sampling which mixes contribu-
tiors from various frequencies. An assoclated problem is that the SNR for the detection of
an object can depend upon the position of the object relative to the discrete reconstruction
Pixels. The effective SNR for discrete images must take into account this variation.

While there may be no loss in the detection SNR for reconstructions in continuous coordi-
nates (DQE = 100%!), a reduction in the SNR will result from aliasing for discrete recon-

structions. A simple one~dimensional model elucidates the characteristics of discrete CT
reconstruction.

Introduction

The problem of the detection of objects in statisticallyllamited computed tomographic
(CT) reconstructions has been approached by several authors - These authors have mainly
dealt with effect of the unusual correlations in CT noise5'7on the detection of reconstruc-
ted obJects. Their derivations, based on continuous coordinates, have thus far avoided the
question of the effect of discrete reconstructions on detection. This paper will concen-
trate on these effects which will become especlally important for the detection of small
objects (i.e., smaller than a few pixels width). A one-dimensinnal model of the CT recon-
struction process will be used to demonstrate the types of effects that can be expected to
occur in the standard 2-D (or 3-D) CT reconstruction. The results for the 1-D model are
directly applicable to situations in which dlscrete 1-D signals are combined to improve the
signal-to-nolise ratio. .

L e oo .. . _One-Dimensional Case _ L
" 1-D Model ‘ ST L T

A one-dimensional model will be used to illustrate the effects of discrete sampling.
Filgure 1 presents the hypothetical x-ray radiographical situation. A source of x rays il-
luminates a section of uniform background material in which is embedded :she object to be
detected. The integral of the combined attenuation coefficient through the material,

R called the projJection, 1s

a LI soeees8

, where N_(x) 1s the initial x-ray density and
0BJECT ° . . N(x) 1s“the unscattered x-ray density. p(x)

. is the contribution from the object and p_ is

-the = mstant contribution from the gackgr und
‘ ‘ ‘ ‘ * ‘ ‘ material. The noise power spectrum’ of the

measured projections arising from the statis-

. PN tical fluctuetions in the number of detected
- TROVECY 1ON x rays 1s
. - . 1
- ‘ L Sp(f) "5 . oo (2)
Fig. 1 One-dimensional model for the : T .
_ detection of an object. _ .where N i1s the average density of unscattered
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x rays assuming N_ >> N and 100% detection efficlency. From signal detection shedry we
know that the opt?mum signal-to-nolse ratio for the detection of the object 1is

2 tpery|2 . -
SNR -= fdrhgé.(%g-sjdf PSNR(f) ; - (3)

-N/df |P(£)]? : o S (W)

where P(f) 1s the Fourier transform of the projection of the object. PSNR stands for the
power signal-to-noise ratio. It is well to point out that this SNR applies to the binary
decision case in '‘hich the decision to be made is whether or not a specific signal is pre-
sent at a specific location. In this situation the SNR 1s the same as the detection sensi-
tivity index d° used to describe the resulting receiver operated characteristic (ROC)
curves. The optimum SNR is that achieved by the optimum receiver (or decision criterion),
in which the characteristics of the nolse as represented by S, are taken into account. The
optimum receiv>r 18 equivalent to the well-known matched filter 10 method. Equatlons 3 and
? assume that there 1s n¢ degradation of the projection signal in the imagl..g process

MYF = 1),

Discrete Projections

We now augment the 1-D model by supposing that the projections are sampled discretely
instead of continuously. Thus, the measurements consist of a sequence of values each of
which correspond to the number of x rays accumulated within an integrating aperture centered
on a given position. It 1is assumed that the positions of these measurements are evenly dls-
tributed along the x-axis with spacing a. The effect of the aperture may be considered
equivalent to a convolution of the original projection p(x) with the aperture function g(x)..
The Fourier transform of the discretely sampled projections is

D (py o 12n£(8-y ) - ey .
Py (f) = 0(f) P(f) e o) * Do s(r - 2kry) | LY

ks

The exponential phase factor results from the offset of the sampling grid relative to x = 0
by a distance y_. Alsc, A is the position of the object relative to x = 0, and P(f) is the
Fourier transfoPm of the object centered at the origin. The cogyolution (*) with the se-
quence of $§-functions represents the well-known aliasing effect which 1s produced by dis-
crete sampling. The discrete sanling at a spacing a can only represent frequencies up to
the Nyquist frequency f_ = (2a)”™*., Thus, contributions present in the distribution being
sampled which occur at ?requencies above f_ must reappear below ra. A convenient notation
for this aliasing convolution operation is .

o Ap fate) - £§;£<r - 2kry) ¥ g(f) - Eng(f -y e

Then Eq. 5 may be written as

CED ) = A ae) B8y &BTTAYO)y ye) g g, S

The nolse power spectrum of the discretely sampled projections is unaffected by the
srmpling aperture since the x rays detected in each measurement are independent of those
detected in other measurements. Thus, the nolse fluctuations are uncorreiated leading to
a flat nolse spectrum (white noise)

sg(r) - i el e £, o R )]



where N” is the number of x rays detected per’unit distance in each projJection.
N° need not be equal to N since the detection efficlency may not be 100%.
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Note that
Also, it should

be realized that this spectrum is only defined for |f|< f » a8 in Eq. 7, not over the whole

frequency range as in Eq. 2.

In order to extend this model to simulate the normal 2-D CT case we will assume that
many projection measurements are made, each vith a different position of the sampling grid
For example, Fig. 2 1llustrates four projections taken of a point object with a rect-

aﬁgular aperture function of width a.
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If the set of m projections taken at various values
of ¥, are used to detect the presence of the object, the optimum SNR is simply:

(9)

It 13 found that in the 1limit as m goes to infinity, the integral of Eq. 9 may be written

(10)

Example of discrete
projections obtained
in the 1-D model for
three different. posi-
tions (A) of a point
objezt. A rectangular
aperture function is
assumed. The recon-
struction 1s produced
by backprojection
using nearest-neighbor
interpolation with the
same sample spacing as
the projections.
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The interesting aspect of this equation is that when the signal power 1s averaged over all

the offset phase factor in Eq. 7 eliminates those amplitude products which occur at dif-
fgrent allased frequencies. Thus, the PSNR for the discretely sampled projectlions is just
the allased product of object and aperture power spectra divided by the noise power spec-
trum . The product mN° has been replaced by NEQ, the_total number of noise eguivalent quan-
ta detected per unit distance for all of the proJections. We see that NEQ plays a central
role in the detection capabilities inherent in the projecticn data.

It is interesting to analyze the projections depicted in Fig. 2 in terms of the fore-
going. Since the object is assumed to be a §-function, P/f) = P_ = constant. Also, the

Fourier tra?sform of the rectangular apertuve function is G(f) =°sinc L Wwhere
sinc z = 2z sin z. a
Then,
PSNRD(f) = NEQ-P2 A, {sinc® X£ }
P (o} fa 2 - -
" = NEQ Po _ S ) o (11)

since when the sinc2 functi~n 1s alliased, the result is unity. Equation 11 indicates that
PSNR is independent of frequency. But this is what is expected since the projections are
§~-functions in their discrete representation leading to a constant signal power in frequency
space.

Discrete Reconstruction

To mimic 2-D CT reconstruction one step further, let us suppose that we wlish to combine
all of the projection measurements into a single 1-D distribution which we will call a
"peconstruction." It is desirable to malntaln the SNR for the detection of the object as
much as possible. However, we will suppose that we are constrained to a discrete represen-
tation for the reconstruction. An appropriate algorithm for the reconstruction process is
that of backprolzction. In backprojection, the contribution at a specific point in the re-

‘eonstruction is proportional to the sum of the values of the projections at that same posl-

tion. Since the projection measurements are only known at discrete positions, some method
of Interpolation between these positions 1s required. If nearest-nelghbor interpolation 1s
employed, the interpolation functlon h(x) is merely a rectangular functlon of width a. The
Fourier transfcrm of the interpolated projection is

I o e ouiey B L
Pyo(fi_ ng? Pyo(r?" Qa2

where H(f) 1s the Fourier transform of the interpolation function h(x). If the projections
are to be filtered before backprojection, the effect of the filter may be readlly incorpo-
rated in H(f). For the 1-D model at hand, filtering is not required to obtain the proper
point-spread function, as it is in 2-D CT. Figure 2 illustrates the reconstruction obtained
using nearest-neighbor interpolation for three different positions of the point object with
respect to the reconstruction grid. L i L .

In the reconstruction process, it is assumed that the object remains stationary with
respect to the reconstruction grid but that numerous projections are Laken with various
grid offsets y It can be shown that the.resulting reconstruction »" (x) sampled at a
Bpacing b has ghe Fourier transform . . .

TRP(1) Ag, W(E) O(E) B(D) 1270y lejgr, TN (13)

" where the Nyquist frequency for the reconstruction is fg - (2b)-1. It 18 interesting to
]

note that the aliasin% effects with respect to the projéction Nyqulst frequency have been
.removed by the averaging over all Yo However, since the reconstruction 1is itgelf

’()c\nm Ly o e ey, [ (t\,), Ay thin o n

i . v f’l\ll'!'!“l(l |

Lol e - - - +

Vorr mgees e



S .\ - 173-41

discretely sampled, the result is aliased with respect to thc reconstruction Nyquist fre-
quency. Similarly, the noise power spectrum of the reconstruction is

sDee) = (EQT Ay (0|2 (14)

Reconstruction SNR

*The power SNR for the reconstruction 1s

b

T |
PSNRD(f) = 13—51111—— = NEQ — NEIIPES (15)
: . Sun) Ay {|H|}
b

This equation is similar to that obtained for the projections, Eq. 10, but there are subtle
differences. One of the most important features of Eq. 1% is that in the numerator 1t is
the amplitudes which are allased, not the power. Thus, the exponential phase factor for
Lhe position of the object A has a powerful effect upon the aliased result. Figure 3 shows
the PSNR of the nearest-neighbor reconstructions given in Fig. 2. For 4 = 0, the phase
factor plays no role and the allased contributlons add constructively. The result 1s a
flat PSNR ‘indicative of the §-function reconstruction. Lowever, for A = 0.5, the phase
factor leads to destructive interfererze between the allased contributions. Thus, the
phase factor is crucial in accounting for the dependence of the reconstruction upon the
obJject position. .

Equation 15 1s also different from Eq. 10 in that the interpolation transform H(f) ap-
pears. However, if H(f) were zero above f_ (band-limited), then the aliasing has no effect.
The resulving FSNR would be the same as Eq. 10 except that 1t would not be aliased with
respect to f_. Thus, the net SNR (Eq. 3) would be the same, i.e., there would be no loss
in SNR in th8 reconstruction process. One way to achieve thls result 1s to use a very small
sample spacing b for the reconstruction to make f_ large enough that H(f) is arbitrarily
small above f, . Of course, this brute force metth may not always be economically feasible,
for example, En 2-D CT where from 100 000 to 260 000 computer words are routinely used to
rerresent the reconstructions. .

DQE_and MTF

The detective quantum efficiencylz(DQE) relates the power SNR subsequent to some stage
of signal processing PSNROUT(f) to that preceding that stage PSNRIN(f):

T PeEUD R R (T | oo ae

A=0 0.25b 0.5b

RECONSTRUCTION

Flg. 3 The power signal-to-
noise ratios (PSNR)
corresponding to the
reconstructions of

Flg. 2 obtained with

" nearest-neighbor in-

terpolatinn. The re-

o lative SNR's for the
, detection of the point

objcst are 1, 0.79,
l | and 0.71 for positions
fN 0 fN 0 m

PSNR(f)

A/b = 0, 0.25, and

0
FREQUENCY 0.5 respectively.
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Thus the optimum SNR for the detection of an object after processing is (Eq. 3)

2
SNRyym = fdf DQE(f) PSNRIN(f) (17)

.

DQE is a convenient concept when applied to continuous coordinates since each stage of pro-
cessing contributes multiplicatively to the net result. However, we see that the allasing
which occurs for discretely sampled signals renders the DQE concept unusable since the con-
tributions at individual frequencies are no longer preserved. Further, as in Eq. 15, the
aliasing can have different effects on the numerator and denominator of the PSNR and the
effects in the numerator depens upon the Fourier transform of the signal, P(f). Thus, it
is Impossible to separate PSNRr into two factors as dictated by Eq. 17.

In the situation considered above in which H(f) is assumed to be band-limited to f _, we
observed that the aliasing effects no longer exist and that the total SNR for the recofi-
Jtruction is the same as for the projections. Thus, in some sense, the DQE(f) for this
case 1s 100%. It has already been shown® for reconstruction in continuous coordinates
(which is an equivalent situation) that DQE(f) = 100%. The import of this result 1s that
an obJect may be detected in a band-limited reconstruction equally well as in the projectim
data themselves. ’

The modulation transfer function (MTF) or optical transfer function(OTF) concepts suffer
the same deficiencles as DQE when applied to discretely sampled signals. While Eq. 13 glves
the Fourier transform of the image, F(f) cannot be separated from the expression as a multi-
plicative factor since the phase variation of P(f) will affect the aliasing results. Ano-
ther way of saying this .s that the MTF of a system cannot be defined when the resulting
image is not tranul.tion invariant. Of course, when the reconstruction becomes finely
enocugh sampled that aliasing is eliminated, the reconstruction resolution may be legitimate-
1y characterized by the MIF.

Effective SNR

As noted above, the PSNR(f) for the reconstruction may be a function of the position of

the object relative to the reconstruction grid. It would be desirable to characterize the
average effect of arbitrary or random positions of an object upon the detvection capabilitiles
inherent in the reconstruction. Let vs consider as an example a situation in which a point
object can only assume one of two positivcns, 4 = 0 and A = (.5b. As shown in Fig. 3, the
optimum SNR for the reconstructions will be either SNR_or 0.71 SNR_, provided the observer
is told the possible position of the object before mak?ng the decisfon. Suppose each ot

the two posaitions is equally probable. We would like to obtain the best possible ROC curve
for this combined position case with_an eye toward extension of the simple binary declsion-
problem to the problem of the searchl3 where the ysition of the object 1s not known before-
hand. Now, it 1s the probabilitles for true positive and false positive responses which

add linearly to obtain the combined ROC curve. The optimum ROC response which comblnes the
best pairs of points from the ROC curves for the two possible obJect poslitions can be shown
to belong to a different class than the individual ROC curves. That Is, 1f the individual
ROC curves characterize the performance obtained for additive, Gaussian noise, then the op-
timum combined RCOC curve is not of the same form. In other words, the optimum decision
function distribution will have non-Gaussian tallc. Thus, the optimum combined response
:eannot be characterized by a single effective SNR.

While the foregoing considerations are true in general, the combined ROC curve can be
approximately characterized by the average SNR:

SNRgpe = 2 Py SNR R ¢ 1)
& .

where ?  1s probability that the object 48 in the 1'th position and SNR, is the correspond-
ing sigﬂal-to-noise ratio. This will be a good approximation when the individual SNR, are
not very different from one another or when the SNR, are all small (€ 1). When this Is ap-
plied to the reconstruction method descriled in Fig. 2, the result of averaging over all
possible object positions from A = 0 to A = 0.5p is SNRe = 0,81 SNR. where SNR_ 1is that
for detection based on the projection data. It 1s seen gﬁat this recBnstruction algorithm
yields an average loss in SNR of 19%. Defining DQE as a summary measure (not a function of
frequency any more): - o o
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we find that the DQE of this reconstruction algorithm is 66%. This means that to achieve
the same average detection capabilities for a point object in the reconstruction as in the

pro%ecgion data, the number of detected x rays must be Jincreased by a factor of
(.66)-1 = 1,521

Let us consider an alternative reconstruction algorithm which usets linear interpolation
in the backprojection orocess. As shown in Fig. 4, the result is to degrade the recon-
struction for A = 0. However, the SNR's for A = 0.25b and 0.5b are increased substantially.
The effective SNR is found to be 0.87 SNR_ and the corresponding DQE 1is 0.76. Note that
although the reconstruction for A = 0.5b Ys the same as Flg. 3, the nolise power spectrum is
no longer constant (it is an alliased sinc”) leading to a higher PSNR.

From the above, we see that it 1s possible to alter the PSNR spectrum of the reconstruc-
tions by choosing various interpolation functions h(x). If the principal application of the
reconstruction is to facllitate the detection of point-like objJjects, then the interpolation
function should be chosen to maximize the average detection sensitivity for a given amount
of noise in the projections. It 1s well to point out that the choice of h(x) may depend
ugon the aperture function G(x). Thus, linear inverpolation would appear to produce recon-
structions superior to those produced by nearest-neighbor interpolation for the rectangular
aperture assumed 1n Figs. 3 and 4. 1In practice, the choice of interpolatior function should
be tempered by practical considerations such as computation speed and appearance of the re-
construction (e.g., one might want to minimize ringing artifacts).

2-D Case
Backprojection

The filtered backprojection reconstruction algorithmlu used in two-dimensional CT can
be seen to share many of tne features of the one-dimensional model. 1In 2-D the discretely
sampled projections must also be interpolated in the backprojection process. Figure 5 shows
a set of projertions which might be obtained for a point object. Suppose that the objJect
happened to fall on the center of a reconstruction pixel. Then the positions at which the
values of the rrojections must be known to obtain the backproljected value of that pixel are
the same as the trajJectory of the object. Near 0° 1t is seen that these positions do not
always coinclde with the projection sampling points. Rather, these positions actually are
evencly distributed relative to the projection sampling points, much in the same way as oc-
curred in the 1-D case through the variation in y_ . Therefore, we expect that in the direc-
tion of these projections the 2-D reconstruction will be subject to the same effects as
were uncovered in the 1-D model.l® Near 90°, on the other hand, the pilxel position occurs
repeatedly at the same position in the projections. Then for some small range of angles
(~ 15° in this case), no smoothing over projection position occurs. This leads to a recon-
struction in these directions which more closely resembles the projectiions themselves.

The foregeing considerations indicate that all of the effects discussed in the 1-D model
will be present to some extent in 2-D reconstruction. An additional complication_in 2-D
filtered backprojection 1s the effect of the |[f| fllter required to remove the r~+ point
spread function of simple backprojection. This filter must have a rather violent influence
upon the reconstruction in the region close to the objJect. We might anticipate that this
filter could affect the detection of small objects in 2-D, for example, because of inexact
cancellation in the realm of discrete reconstruction.

Conclusions

It has been shown for a 1-D model that reconstruction in discrete coordinates from dis-
cretely smapled projections can lead to a loss of sensitivity for the detection of small

objects. A similar lnss of detection sensitivity is likely %o occur in discrete 2-D CT re-
construction. .
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